Numerical Study on Bubble Rising in Complex Channels Saturated with Liquid Using a Phase-Field Lattice-Boltzmann Method

Author:

Yu Kang,Yong Yumei,Yang Chao

Abstract

Packed bed reactors have been widely applied in industrial production, such as for catalytic hydrogenation. Numerical simulations are essential for the design and scale-up of packed beds, especially direct numerical simulation (DNS) methods, such as the lattice-Boltzmann method (LBM), which are the focus of future researches. However, the large density difference between gas and liquid in packed beds often leads to numerical instability near phase interface when using LBM. In this paper, a lattice-Boltzmann (LB) model based on diffuse-interface phase-field is employed to simulate bubble rising in complex channels saturated with liquid, while the numerical problems caused by large liquid-to-gas density ratio are solved. Among them, the channel boundaries are constructed with regularly arranged circles and semicircles, and the bubbles pass through the channels accompanied by deformation, breakup, and coalescence behaviors. The phase-field LB model is found to exhibit good numerical stability and accuracy in handing the problem of the bubbles rising through the high-density liquid. The effects of channel structures, gas-liquid physical properties, and operating conditions on bubble deformation, motion velocity, and drag coefficient are simulated in detail. Moreover, different flow patterns are distinguished according to bubble behavior and are found to be associated with channel structure parameters, gravity Reynolds number (ReGr), and Eötvös number (Eo).

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3