Colorado River (Argentina) Water Crisis Scenarios and Influence on Irrigation Water Quality Conditions

Author:

Trillini Mariano12,Pierini Jorge Omar12,Vallese Federico Danilo1,Dunel Guerra Luciana3,Pistonesi Marcelo Fabian12

Affiliation:

1. Departamento de Química, Universidad Nacional del Sur, INQUISUR, Avenida Alem 1253 (B8000CPB), Bahía Blanca 8000, Argentina

2. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata 1900, Argentina

3. INTA H. Ascasubi, Ruta 3 km 794, Hilario Ascasubi 8142, Argentina

Abstract

The characterization and evaluation of water quality in the Valle Bonaerense del Río Colorado (VBRC), Buenos Aires, Argentina, is necessary, given the immense importance of this region for sustaining the population livelihoods and maintaining the ecological balance, especially in the face of drought and climate change scenarios, and loss of crop production yields. This study evaluated the possible reuse of drainage canals from the perspective of their use for irrigation. Surface water samples were collected at four sampling sites during 2015–2021, one over the Colorado river entering the VBRC, and the remaining three drainage canals flow into the Atlantic Ocean. These physicochemical parameters were performed following the protocols proposed using standard methods: total dissolved solids, pH, electrical conductivity (EC), calcium, magnesium, sodium, potassium, carbonates, bicarbonates, chlorides, sulfates and sodium adsorption ratio were analyzed and classified. The irrigation water quality index (IWQI), principal component analysis, hierarchy of classes analysis and statistical analysis were applied to the dataset. The general hydrochemistry of the VBRC river water indicates a slightly alkaline nature, with a mean pH value of 8.03, and the predominance order of the major ions follows the pattern of Na+ > Ca2+ > Mg2+ > K+, and SO42− > Cl− > HCO3− + CO32− for the anions. For the IWQI, 88.06% of the samples analyzed were classified as safe water for irrigation, and a theoretical yield loss was estimated for crops considering the salinity variable, with vegetables showing the highest losses. The surface water from rivers increases the EC due to the decrease in its discharge because of the water crisis affecting Latin America. Water reuse could be useful for one of the three drainage canals. This study concludes that the reuse of drainage water (S2) has great potential as an adaptation strategy to address the water scarcity and climate change challenges in the Colorado river basin. The research highlights the importance of considering this alternative to achieve sustainable water management in the region. Moreover, the data obtained from the study can be used for making policy and resource management decisions. In view of the possible scenarios of low water flow and increases in the EC values, it is recommended to reorient agricultural production toward crops with higher tolerance to salinity as an alternative, to ensure the sustainability and viability of production in the basin.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3