Prioritization of Off-Grid Hybrid Renewable Energy Systems for Residential Communities in China Considering Public Participation with Basic Uncertain Linguistic Information

Author:

Liu Limei1,Chen Xinyun1ORCID,Yang Yi1ORCID,Yang Junfeng1,Chen Jie1

Affiliation:

1. School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha 410205, China

Abstract

In recent years, the adoption of Hybrid Renewable Energy Systems (HRESs) is rapidly increasing globally due to their economic and environmental benefits. In order to ensure the smooth implementation of HRESs, it is important to systematically capture societal preferences. However, few studies focus on the effective integration of public opinion into energy planning decisions. In this study, a decision-making approach for public participation in HRES planning is proposed to optimize the configuration of off-grid HRESs. First, an HRES evaluation index system considering public participation was constructed; to address the situation where the public from different backgrounds may have limited and inconsistent understanding of indicators, the basic uncertain linguistic information (BULI) is introduced to express evaluations and associated reliability levels. The indicator weights were then determined through the evaluation of both the public and the expert opinions. Second, the BULI-EDAS decision approach was developed by extending the EDAS method to the BULI environment to optimize HRES planning. Finally, the proposed model was applied to identify the optimal configuration in rural China. The comparative analysis results show that the proposed method can avoid misunderstandings and facilitate realistic public judgments. The selected optimal plan has a standardized energy price of 0.126 USD/kWh and generates 45,305 kg CO2/year, resulting in the best overall performance. The proposed HRES planning method provides a practical approach for decision makers to conduct HRES planning in a public participation environment to promote clean energy transitions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3