Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances

Author:

Liu Xuan,Chen Jianbao

Abstract

Along with the rapid development of the geographic information system, high-dimensional spatial heterogeneous data has emerged bringing theoretical and computational challenges to statistical modeling and analysis. As a result, effective dimensionality reduction and spatial effect recognition has become very important. This paper focuses on variable selection in the spatial autoregressive model with autoregressive disturbances (SARAR) which contains a more comprehensive spatial effect. The variable selection procedure is presented by using the so-called penalized quasi-likelihood approach. Under suitable regular conditions, we obtain the rate of convergence and the asymptotic normality of the estimators. The theoretical results ensure that the proposed method can effectively identify spatial effects of dependent variables, find spatial heterogeneity in error terms, reduce the dimension, and estimate unknown parameters simultaneously. Based on step-by-step transformation, a feasible iterative algorithm is developed to realize spatial effect identification, variable selection, and parameter estimation. In the setting of finite samples, Monte Carlo studies and real data analysis demonstrate that the proposed penalized method performs well and is consistent with the theoretical results.

Funder

Natural Science Foundation of Fujian Province

Postdoctoral Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3