Abstract
A resource network is a non-classical flow model where the infinitely divisible resource is iteratively distributed among the vertices of a weighted digraph. The model operates in discrete time. The weights of the edges denote their throughputs. The basic model, a standard resource network, has one general characteristic of resource amount—the network threshold value. This value depends on graph topology and weights of edges. This paper briefly outlines the main characteristics of standard resource networks and describes two its modifications. In both non-standard models, the changes concern the rules of receiving the resource by the vertices. The first modification imposes restrictions on the selected vertices’ capacity, preventing them from accumulating resource surpluses. In the second modification, a network with so-called greedy vertices, on the contrary, vertices first accumulate resource themselves and only then begin to give it away. It is noteworthy that completely different changes lead, in general, to the same consequences: the appearance of a second threshold value. At some intervals of resource values in networks, their functioning is described by a homogeneous Markov chain, at others by more complex rules. Transient processes and limit states in networks with different topologies and different operation rules are investigated and described.
Funder
Russian Foundation for Basic Research
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献