Affiliation:
1. Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
2. Research, Innovation and Graduate Department, Universidad Politécnica de Pachuca, Carr. Cd. Sahagún-Pachuca Km. 20, Zempoala 43830, Mexico
Abstract
Hypertensive disorders in pregnancy, which include preeclampsia, eclampsia, and chronic hypertension, complicate approximately 10% of all pregnancies in the world, constituting one of the most serious causes of mortality and morbidity in gestation. To help predict the occurrence of hypertensive disorders, a study based on algorithms that help model this health problem using mathematical tools is proposed. This study proposes a fuzzy c-means (FCM) model based on the Takagi–Sugeno (T-S) type of fuzzy rule to predict hypertensive disorders in pregnancy. To test different modeling methodologies, cross-validation comparisons were made between random forest, decision tree, support vector machine, and T-S and FCM methods, which achieved 80.00%, 66.25%, 70.00%, and 90.00%, respectively. The evaluation consisted of calculating the true positive rate (TPR) over the true negative rate (TNR), with equal error rate (EER) curves achieving a percentage of 20%. The learning dataset consisted of a total of 371 pregnant women, of which 13.2% were diagnosed with a condition related to gestational hypertension. The dataset for this study was obtained from the Secretaría de Salud del Estado de Hidalgo (SSEH), México. A random sub-sampling technique was used to adjust the class distribution of the data set, and to eliminate the problem of unbalanced classes. The models were trained using a total of 98 samples. The modeling results indicate that the T-S and FCM method has a higher predictive ability than the other three models in this research.
Funder
Pachuca jurisdiction area and the Jesus del Rosal healthcare institution
National Laboratory in Autonomous Vehicles and Exoskeletons
National Council for Humanities, Science and Technology