Organized Optimization Integration Validation Model for Internet of Things (IoT)-Based Real-Time Applications

Author:

Alghuried Abdullah1ORCID,Alghuson Moahd Khaled1ORCID,Alahmari Turki S.2ORCID,Abuhasel Khaled Ali3ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, University of Tabuk, Tabuk 47512, Saudi Arabia

2. Department of Civil Engineering, Faculty of Engineering, University of Tabuk, Tabuk 47512, Saudi Arabia

3. Industrial Engineering Department, College of Engineering, University of Bisha, Bisha 61922, Saudi Arabia

Abstract

Emerging technology like the Internet of Things (IoT) has great potential for use in real time in many areas, including healthcare, agriculture, logistics, manufacturing, and environmental surveillance. Many obstacles exist alongside the most popular IoT applications and services. The quality of representation, modeling, and resource projection is enhanced through interactive devices/interfaces when IoT is integrated with real-time applications. The architecture has become the most significant obstacle due to the absence of standards for IoT technology. Essential considerations while building IoT architecture include safety, capacity, privacy, data processing, variation, and resource management. High levels of complexity minimization necessitate active application pursuits with variable execution times and resource management demands. This article introduces the Organized Optimization Integration Validation Model (O2IVM) to address these issues. This model exploits k-means clustering to identify complexities over different IoT application integrations. The harmonized service levels are grouped as a single entity to prevent additional complexity demands. In this clustering, the centroids avoid lags of validation due to non-optimized classifications. Organized integration cases are managed using centroid deviation knowledge to reduce complexity lags. This clustering balances integration levels, non-complex processing, and time-lagging integrations from different real-time levels. Therefore, the cluster is dissolved and reformed for further integration-level improvements. The volatile (non-clustered/grouped) integrations are utilized in the consecutive centroid changes for learning. The proposed model’s performance is validated using the metrics of execution time, complexity, and time lag.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3