Author:
Matsumoto Hironori,Young Adam
Abstract
Cobbles (64–256 mm) are found on beaches throughout the world, influence beach morphology, and can provide shoreline stability. Detailed, frequent, and spatially large-scale quantitative cobble observations at beaches are vital toward a better understanding of sand-cobble beach systems. This study used a truck-mounted mobile terrestrial LiDAR system and a raster-based classification approach to map cobbles automatically. Rasters of LiDAR intensity, intensity deviation, topographic roughness, and slope were utilized for cobble classification. Four machine learning techniques including maximum likelihood, decision tree, support vector machine, and k-nearest neighbors were tested on five raster resolutions ranging from 5–50 cm. The cobble mapping capability varied depending on pixel size, classification technique, surface cobble density, and beach setting. The best performer was a maximum likelihood classification using 20 cm raster resolution. Compared to manual mapping at 15 control sites (size ranging from a few to several hundred square meters), automated mapping errors were <12% (best fit line). This method mapped the spatial location of dense cobble regions more accurately compared to sparse and moderate density cobble areas. The method was applied to a ~40 km section of coast in southern California, and successfully generated temporal and spatial cobble distributions consistent with previous observations.
Funder
U.S. Army Corps of Engineers
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献