Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy

Author:

Verde Natalia,Mallinis Giorgos,Tsakiri-Strati Maria,Georgiadis Charalampos,Patias PetrosORCID

Abstract

Improved sensor characteristics are generally assumed to increase the potential accuracy of image classification and information extraction from remote sensing imagery. However, the increase in data volume caused by these improvements raise challenges associated with the selection, storage, and processing of this data, and with the cost-effective and timely analysis of the remote sensing datasets. Previous research has extensively assessed the relevance and impact of spatial, spectral and temporal resolution of satellite data on classification accuracy, but little attention has been given to the impact of radiometric resolution. This study focuses on the role of radiometric resolution on classification accuracy of remote sensing data through different classification experiments over three different sites. The experiments were carried out using fine and low scale radiometric resolution images classified through a bagging classification tree. The classification experiments addressed different aspects of the classification road map, including among others, binary and multiclass classification schemes, spectrally and spatially enhanced images, as well as pixel and objects as units of the classification. In addition, the impact of image radiometric resolution on computational time and the information content in fine- and low-resolution images was also explored. While in certain cases, higher radiometric resolution has led to up to 8% higher classification accuracies compared to lower resolution radiometric data, other results indicate that higher radiometric resolution does not necessarily imply improved classification accuracy. Also, classification accuracy of spectral indices and texture bands is not related so much to the radiometric resolution of the original remote sensing images but rather to their own radiometric resolution. Overall, the results of this study suggest that data selection and classification need not always adhere to the highest possible radiometric resolution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3