A New Method for Mapping Aquatic Vegetation Especially Underwater Vegetation in Lake Ulansuhai Using GF-1 Satellite Data

Author:

Chen Qi,Yu Ruihong,Hao Yanling,Wu Linhui,Zhang Wenxing,Zhang Qi,Bu Xunan

Abstract

It is difficult to accurately identify and extract bodies of water and underwater vegetation from satellite images using conventional vegetation indices, as the strong absorption of water weakens the spectral feature of high near-infrared (NIR) reflected by underwater vegetation in shallow lakes. This study used the shallow Lake Ulansuhai in the semi-arid region of China as a research site, and proposes a new concave–convex decision function to detect submerged aquatic vegetation (SAV) and identify bodies of water using Gao Fen 1 (GF-1) multi-spectral satellite images with a resolution of 16 meters acquired in July and August 2015. At the same time, emergent vegetation, “Huangtai algae bloom”, and SAV were classified simultaneously by a decision tree method. Through investigation and verification by field samples, classification accuracy in July and August was 92.17% and 91.79%, respectively, demonstrating that GF-1 data with four-day short revisit period and high spatial resolution can meet the standards of accuracy required by aquatic vegetation extraction. The results indicated that the concave–convex decision function is superior to traditional classification methods in distinguishing water and SAV, thus significantly improving SAV classification accuracy. The concave–convex decision function can be applied to waters with SAV coverage greater than 40% above 0.3 m and SAV coverage 40% above 0.1 m under 1.5 m transparency, which can provide new methods for the accurate extraction of SAV in other regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Lake Environment in China;Jin,1995

2. Remote Sensing of Lake Water Environment;Ma,2010

3. Remote sensing of aquatic vegetation: theory and applications

4. Mapping aquatic macrophytes through digital image analysis of aerial photographs: An assessment;Marshall;J. Aquat. Plant Manag.,1994

5. Remote sensing and geographic information system techniques for aquatic resource evaluation;Welch;Photogramm. Eng. Remote Sens.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3