Author:
Chen Qi,Yu Ruihong,Hao Yanling,Wu Linhui,Zhang Wenxing,Zhang Qi,Bu Xunan
Abstract
It is difficult to accurately identify and extract bodies of water and underwater vegetation from satellite images using conventional vegetation indices, as the strong absorption of water weakens the spectral feature of high near-infrared (NIR) reflected by underwater vegetation in shallow lakes. This study used the shallow Lake Ulansuhai in the semi-arid region of China as a research site, and proposes a new concave–convex decision function to detect submerged aquatic vegetation (SAV) and identify bodies of water using Gao Fen 1 (GF-1) multi-spectral satellite images with a resolution of 16 meters acquired in July and August 2015. At the same time, emergent vegetation, “Huangtai algae bloom”, and SAV were classified simultaneously by a decision tree method. Through investigation and verification by field samples, classification accuracy in July and August was 92.17% and 91.79%, respectively, demonstrating that GF-1 data with four-day short revisit period and high spatial resolution can meet the standards of accuracy required by aquatic vegetation extraction. The results indicated that the concave–convex decision function is superior to traditional classification methods in distinguishing water and SAV, thus significantly improving SAV classification accuracy. The concave–convex decision function can be applied to waters with SAV coverage greater than 40% above 0.3 m and SAV coverage 40% above 0.1 m under 1.5 m transparency, which can provide new methods for the accurate extraction of SAV in other regions.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Reference43 articles.
1. Lake Environment in China;Jin,1995
2. Remote Sensing of Lake Water Environment;Ma,2010
3. Remote sensing of aquatic vegetation: theory and applications
4. Mapping aquatic macrophytes through digital image analysis of aerial photographs: An assessment;Marshall;J. Aquat. Plant Manag.,1994
5. Remote sensing and geographic information system techniques for aquatic resource evaluation;Welch;Photogramm. Eng. Remote Sens.,1988
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献