Abstract
High-precision indoor three-dimensional maps are a prerequisite for building information models, indoor location-based services, etc., but the indoor mapping solution is still in the stage of technological experiment and application scenario development. In this paper, indoor mapping equipment integrating a three-axis laser scanner and panoramic camera is designed, and the corresponding workflow and critical technologies are described. First, hardware design and software for controlling the operations and calibration of the spatial relationship between sensors are completed. Then, the trajectory of the carrier is evaluated by a simultaneous location and mapping framework, which includes reckoning of the real-time position and attitude of the carrier by a filter fusing the horizontally placed laser scanner data and inertial measurement data, as well as the global optimization by a closed-loop adjustment using a graph optimization algorithm. Finally, the 3D point clouds and panoramic images of the scene are reconstructed from two tilt-mounted laser scanners and the panoramic camera by synchronization of the position and attitude of the carrier. The experiment was carried out in a five-story library using the proposed prototype system; the results demonstrate accuracies of up to 3 cm for 2D maps, and up to 5 cm for 3D maps, and the produced point clouds and panoramic images can be utilized for modeling and further works related to large-scale indoor scenes. Therefore, the proposed system is an efficient and accurate solution for indoor 3D mapping.
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献