Drivers of Landscape Changes in Coastal Ecosystems on the Yukon-Kuskokwim Delta, Alaska

Author:

Jorgenson M.,Frost GeraldORCID,Dissing Dorte

Abstract

The Yukon-Kuskokwim Delta (YKD) is the largest delta in western North America and its productive coastal ecosystems support globally significant populations of breeding birds and a large indigenous population. To quantify past landscape changes as a guide to assessing future climate impacts to the YKD and how indigenous society may adapt to change, we photo-interpreted ecotypes at 600 points within 12 grids in a 2118 km2 area along the central YKD coast using a time-series of air photos from 1948–1955 and 1980 and satellite images from 2007–2008 (IKONOS) and 2013–2016 (WorldView). We found that ecotype classes changed 16.2% (342 km2) overall during the ~62 years. Ecotypes changed 6.0% during 1953–1980, 7.2% during 1980–2007 and 3.8% during 2007–2015. Lowland Moist Birch-Ericaceous Low Scrub (−5.0%) and Coastal Saline Flat Barrens (−2.3%) showed the greatest decreases in area, while Lowland Water Sedge Meadow (+1.7%) and Lacustrine Marestail Marsh (+1.3%) showed the largest increases. Dominant processes affecting change were permafrost degradation (5.3%), channel erosion (3.0%), channel deposition (2.2%), vegetation colonization (2.3%) and lake drainage (1.5%), while sedimentation, water-level fluctuations, permafrost aggradation and shoreline paludification each affected <0.5% of the area. Rates of change increased dramatically in the late interval for permafrost degradation (from 0.06 to 0.26%/year) and vegetation colonization (from 0.03 to 0.16%/year), while there was a small decrease in channel deposition (from 0.05 to 0.0%/year) due largely to barren mudflats being colonized by vegetation. In contrast, rates of channel erosion remained fairly constant. The increased permafrost degradation coincided with increasing storm frequency and air temperatures. We attribute increased permafrost degradation and vegetation colonization during the recent interval mostly to the effects of a large storm in 2005, which caused extensive salt-kill of vegetation along the margins of permafrost plateaus and burial of vegetation on active tidal flats by mud that was later recolonized. Due to the combination of extremely flat terrain, sea-level rise, sea-ice reduction that facilitates more storm flooding and accelerating permafrost degradation, we believe the YKD is the most vulnerable region in the Arctic to climate warming.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. The Importance of Subarctic Intertidal Habitats to Shorebirds: A Study of the Central Yukon-Kuskokwim Delta, Alaska

2. Hierarchical Organization of Ecosystems at Multiple Spatial Scales on the Yukon-Kuskokwim Delta, Alaska, U.S.A.

3. Topography and flooding of coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska: Implications for sea-level rise;Jorgenson;J. Coast. Res.,2001

4. Coastal Geomorphology: An Introduction;Bird,2000

5. Estuarine Ecology;Day,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3