UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health

Author:

Dash Jonathan,Pearse Grant,Watt Michael

Abstract

The development of methods that can accurately detect physiological stress in forest trees caused by biotic or abiotic factors is vital for ensuring productive forest systems that can meet the demands of the Earth’s population. The emergence of new sensors and platforms presents opportunities to augment traditional practices by combining remotely-sensed data products to provide enhanced information on forest condition. We tested the sensitivity of multispectral imagery collected from time-series unmanned aerial vehicle (UAV) and satellite imagery to detect herbicide-induced stress in a carefully controlled experiment carried out in a mature Pinus radiata D. Don plantation. The results revealed that both data sources were sensitive to physiological stress in the study trees. The UAV data were more sensitive to changes at a finer spatial resolution and could detect stress down to the level of individual trees. The satellite data tested could only detect physiological stress in clusters of four or more trees. Resampling the UAV imagery to the same spatial resolution as the satellite imagery revealed that the differences in sensitivity were not solely the result of spatial resolution. Instead, vegetation indices suited to the sensor characteristics of each platform were required to optimise the detection of physiological stress from each data source. Our results define both the spatial detection threshold and the optimum vegetation indices required to implement monitoring of this forest type. A comparison between time-series datasets of different spectral indices showed that the two sensors are compatible and can be used to deliver an enhanced method for monitoring physiological stress in forest trees at various scales. We found that the higher resolution UAV imagery was more sensitive to fine-scale instances of herbicide induced physiological stress than the RapidEye imagery. Although less sensitive to smaller phenomena the satellite imagery was found to be very useful for observing trends in physiological stress over larger areas.

Funder

Ministry for Business Innovation and Employment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3