Electron Donor-Induced Electrochemical Reduction in Vanadate Anions to Enhance the Electrochemical Performance of Plasma Electrolytic Oxidation Layers

Author:

Kaseem Mosab1ORCID,Fattah-alhosseini Arash2ORCID,Dikici Burak3ORCID

Affiliation:

1. Corrosion and Electrochemistry Laboratory, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Materials Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan 65178-38695, Iran

3. Department of Metallurgical and Materials Engineering, Faculty of Engineering, Ataturk University, Erzurum 25240, Turkey

Abstract

Despite the increasing interest in enhancing the electrochemical stability of Al alloys through protective coatings, the role of electron donor agents during coating formation remains poorly understood in terms of morphological control and anticorrosion properties in aqueous environments. In this context, 1H-Benzotriazole (BTA) was utilized as a proof of concept to regulate the in situ reactive integration of V2O5 into the alumina layer via the plasma electrolytic oxidation of a 6061 Al alloy. BTA played a crucial role in chemically incorporating V2O5 into the alumina coating by supplying electrons to VO3− ions, facilitating their reduction. The quantity of BTA added to the electrolyte was found to influence defect morphology and concurrently enhance the chemical incorporation of V2O5. Notably, corrosion measurements revealed that the less porous hybrid film formed with higher corrosion resistance was associated with the utilization of increased concentrations of BTA. These findings highlight the potential of BTA in modifying the structure and improving the ability of alumina coatings to resist corrosion, enabling advanced applications in protecting Al alloys from corrosion.

Funder

National Research Foundation of Korea (NRF), funded by the Korean government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3