Sustainable Recovery of Silver and Copper Photovoltaic Metals from Waste-Conductive Silver Pastes Using Thiosulfate Extraction and Ultraviolet Photolysis

Author:

Tao Qing1,Han Chao123ORCID,Jing Qiankun1,Wang Guangxin3

Affiliation:

1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China

3. Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, China

Abstract

Waste-conductive silver pastes are considered an important secondary resource. The recovery of metals from waste-conductive silver pastes have high economic value. The traditional cyanidation method has serious environmental pollution, while the thiosulfate method is green, environmentally friendly, and has become a viable alternative for metal extraction. The exposure of thiosulfate complexes to ultraviolet (UV) light has been found to generate metal sulfides, and this can be used to realize the recovery of valuable metals. In this study, the extraction of silver and copper from conductive silver pastes was systematically performed using sodium thiosulfate, and the effects of sodium thiosulfate concentration, solid-to-liquid ratio, and extraction and photolytic process temperatures were investigated. The photolytic products were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. After 4 h of UV irradiation with a wavelength of 254 nm, 87% of silver and 49% of copper were recovered and transformed into silver and copper sulfide, respectively. This study demonstrates that thiosulfate can be applied in combination with UV photolysis technology to recover valuable metals in an environmentally friendly manner.

Funder

National Natural Science Foundation of China

Henan Provincial Science and Technology R & D Plan Joint Fund Project

Funds for HAUST Young Cadre Teacher

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3