Low-Cycle Corrosion Fatigue Deformation Mechanism for an α+β Ti-6Al-4V-0.55Fe Alloy

Author:

Sun Yangyang1,Qian Shenwei1,Chang Hui1,Feng Liang1,Li Feng1,Zhou Lian1

Affiliation:

1. Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

Abstract

Titanium alloys with high strength and good corrosion resistance have become one of the critical bearing structural materials in marine engineering. But in service, corrosion fatigue would occur under the synergetic action of cyclic external load and corrosion environment, threatening the safety of components. In this study, compared with low-cycle fatigue in laboratory air, the low-cycle corrosion fatigue deformation mechanism and fracture characteristic of the Ti-6Al-4V-0.55Fe alloy were investigated in 3.5% NaCl corrosion solution under selected stress amplitudes. The results showed that under low stress amplitude, corrosion fatigue was determined by fatigue damage and corrosion damage, causing a reduction in fatigue life. The local stress concentration caused by corrosion pits and dislocations pile-up accelerated the initiation of fatigue cracks, and other corrosion behavior including crevice corrosion promoted fatigue crack propagation; the corrosion solution increased the surface damage. While under high stress amplitude, due to the short contact time between the sample and solution and higher applied stress, the fatigue life is determined by fatigue damage caused by multiple slips.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institution

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3