Influence of Process Parameters on the Mechanical Properties and Corrosion Resistance of Dissimilar Friction Stir Welded Joints of AA2024-O and AA6061-O Aluminum Alloys

Author:

Soto-Diaz Roosvel1ORCID,Sandoval-Amador Anderson2ORCID,Escorcia-Gutierrez José3,Unfried-Silgado Jimy4ORCID

Affiliation:

1. Biomedical Engineering Program, Universidad Simón Bolívar, Barranquilla 080002, Colombia

2. Department of Engineering, Universidad Loyola Andalucia, 41704 Dos Hermanas, Spain

3. Department of Computational Science and Electronic, Universidad de la Costa, CUC, Barranquilla 080002, Colombia

4. Research Group ICT, Department of Mechanical Engineering, University of Cordoba, Montería 230002, Colombia

Abstract

The influence of the process parameters, traverse, and rotational speeds of dissimilar friction stir welded joints of AA2024-O and AA6061-O aluminum alloys on the corrosion resistance was evaluated. Potentiodynamic tests using a 3.5% NaCl solution, open circuit potential, and polarization curves showed the corrosion behavior for the different welding parameters. These data were correlated with those obtained by mechanical tests (microhardness, tensile, and fracture analysis) and microstructure analysis by optical and scanning electron microscopy. It was observed that the combined effect of the parameters influenced the variation of corrosion resistance. This was evidenced mainly by the improvement of corrosion resistance at 1200 rpm–65 mm·min−1, which was related to the tendency of grain size and heat input presented. The corrosive attacks on the welded joints presented greater affectations in the presence of base material 1 (AA6061-O) with higher metallic dissolution. Corrosion attacks abovementioned were presented in different forms, such as pitting, localized, and selective, and they were observed by scanning electron microscopy. Finally, in corrosive and mechanical terms, the best performing condition was 1200 rpm and 65 mm·min−1 compared to the low parameter of 840 rpm and 45 mm·min−1.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3