Study and Optimization of the Punching Process of Steel Using the Johnson–Cook Damage Model

Author:

Claver Adrián12ORCID,Acosta Andrea Hernández1,Barba Eneko13ORCID,Fuertes Juan P.1ORCID,Torres Alexia1ORCID,García José A.12ORCID,Luri Rodrigo1,Salcedo Daniel1

Affiliation:

1. Engineering Department, Universidad Pública de Navarra (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain

2. Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain

3. NUADI, Polígono Ind. Arazuri-Orcoyen, Calle D, 2, 31170 Arazuri, Spain

Abstract

Sheet metal forming processes are widely used in applications such as those in the automotive or aerospace industries. Among them, punching is of great interest due to its high productivity and low operating cost. However, it is necessary to optimize these processes and adjust their parameters, such as clearance, shear force or tool geometry, to obtain the best finishes and minimize crack generation. Thus, the main objective of this research work is to optimize the punching process to achieve parts that do not require subsequent processes, such as deburring, by controlling the properties of the starting materials and with the help of tools such as design of experiments and simulations. In the present study, tensile tests were performed on three steels with different compositions and three sample geometries. The information obtained from these tests has allowed us to determine the parameters of the Johnson–Cook damage criteria. Moreover, punching was performed on real parts and compared with simulations to analyze the percentage of burnish surface. The results obtained show that the methodology used was correct and that it can be extrapolated to other types of die-cutting processes by reducing the percentage of surface fractures and predicting the appearance of cracks. Furthermore, it was observed that clearance has a greater influence than processing speed, while the minimum percentage of the burnish area was observed for the minimum values of clearance.

Funder

Gobierno de Navarra-Departamento de Desarrollo Económico y Empresarial

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3