Preparation of Two Novel Stable Silica-Based Adsorbents for Selective Separation of Sr from Concentrated Nitric Acid Solution

Author:

Liu Chang1,Zhang Shichang2,Wang Xinpeng1ORCID,Chen Lifeng3,Yin Xiangbiao3,Hamza Mohammed F.3ORCID,Wei Yuezhou34ORCID,Ning Shunyan3ORCID

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

2. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China

3. School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, China

4. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Crown ethers are famous for the highly selectively grab Sr(II) from concentrated nitric acid solution due to the size match, but they suffer from the high leakage into the liquid phase caused by the presence of a large number of hydrophilic groups. To reduce their leakage, two novel porous silica-based adsorbents, (DtBuCH18C6 + Dodec)/SiAaC-g-ABSA and (DtBuCH18C6 + Dodec)/SiAaC-g-3-ABSA, were prepared by vacuum impregnation with organic contents of about 55.9 wt.% and 56.1 wt.%, respectively. The two adsorbents have good reusability and structural stability, and the total organic carbon leakage rates in 2 M HNO3 solution are lower than 0.56 wt.% and 0.29 wt.%, respectively. Batch adsorption experiments revealed that the two adsorbents possessed good adsorption selectivity towards Sr, with SFSr/M over 40, except that of SFSr/Ba in 2 M HNO3 solution. The adsorption equilibrium of Sr in 2 M HNO3 solution was reached within 1 h, with saturated adsorption capacities of 36.9 mg/g and 37.5 mg/g, respectively. Furthermore, the XPS results indicate that the adsorption mechanism is the coordination of the crown ether ring with Sr. This work not only develops two novel adsorbents for the separation of Sr in nitric acid environments; it also provides a method for effectively reducing the water solubility of crown ethers.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3