Superelastic Properties of Aged FeNiCoAlTaB Cold-Rolled Shape Memory Alloys

Author:

Tseng Li-Wei1,Song Miao2ORCID,Chen Wei-Cheng1,Hsu Yi-Ting3,Chen Chih-Hsuan34ORCID

Affiliation:

1. Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan

2. Department of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

3. Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

4. Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

In the present study, microstructure and cyclic tensile tests were used to measure the superelastic responses of Fe40.95Ni28Co17Al11.5Ta2.5B0.05 (at.%) shape memory alloys after 97% cold rolling. Cold-rolled samples underwent annealing heat treatment (1250 °C/1 h) followed by quenching in water or aging heat treatment (700 °C/6 h and 700 °C/12 h) followed by quenching in water. The microstructure results showed that the average grain size increased from 210 μm to 1570 μm as annealing times increased from 0.5 h to 1 h. X-ray diffraction (XRD) spectra for FeNiCoAlTaB (NCATB) showed that in cold-rolled alloys after solution, the strong peak was in the face-centered cubic (γ, FCC) <111> structure. In aged samples, a new peak (γ’, FCC) emerged, the intensity of which increased as aging times rose from 6 to 12 h. Transmission electron microscope (TEM) images showed that the average precipitate size was around 10 nm in 700 °C/6 h specimens and 18 nm in 700 °C/12 h specimens. The precipitate was enriched in Ni, Al, and Ta elements and exhibited an L12 crystal structure. Tensile samples aged at 700 °C for 6 and 12 h exhibited recoverable strains of 1% and 2.6%, respectively, at room temperature. Digital image correlation (DIC) results for the sample aged at 700 °C for 12 h showed that two martensite variants were activated during the superelastic test. Such variants can form corresponding variant pairs (CVPs), which promote tensile deformation. The tensile sample exhibited a gradual cyclic degradation, and a large irrecoverable strain was observed after the test. This irrecoverable strain was the result of residual martensite, which was pinned by dislocations.

Funder

National Science and Technology Council

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3