Optimization of the Laser Drilling Processing Parameters for Carbon Steel Based on Multi-Physics Simulation

Author:

Liang Shanqing1,Li Fengxian1,Liu Yichun1ORCID,Yi Jianhong1,Eckert Jürgen2ORCID

Affiliation:

1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben, Austria

Abstract

The laser drilling of carbon steel is always suffered from the formation of slag, the presence of cutting burrs, the generation of a significant quantity of spatter, and the incomplete penetration of the substrate. In order to avoid these defects formed during the laser drilling of carbon steel, the COMSOL multi-physics simulation method was used to model and optimize the laser drilling process. Considering the splash evolution of the material during the complex drilling process, the transient evolution of the temperature field, the flow of the molten fluid, the geometrical changes, and the absorption of the laser energy during the laser drilling process were investigated. The simulated borehole dimensions are consistent with the experimental results. The process parameters have a great influence on the fluid flow pattern and material slag splashing. The laser power has a significant effect on the laser processing compared with the process parameters. With the increase in laser power and the decrease in laser heat source radius, the time required for perforation is reduced, the flow of melt is accelerated, the perforation efficiency is increased, and the hole wall is smoother, but the degree of spattering is greater. The optimized process parameters were obtained: laser heat source radius of 0.3 mm, laser power of 3000 W. These findings can help reduce the machining defects in carbon steel with excellent mechanical properties by optimizing the laser drilling processing parameters.

Funder

Science Foundation of the Yunnan Provincial Science and Technology Department

Science and Technology Major Project of Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3