The Effect of Niobium on the Mechanical and Thermodynamic Properties of Zirconium Alloys

Author:

Kong Xianggang1ORCID,Kuang Huimin1,Li An2,Yu You3,Kharchenko Dmitrii O.4ORCID,Mao Jianjun1,Wu Lu1

Affiliation:

1. The First Institute, Nuclear Power Institute of China, Chengdu 610041, China

2. Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science of and Technology, Sichuan University, Chengdu 610059, China

3. College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China

4. Institute of Applied Physics, National Academy of Sciences of Ukraine, 40000 Sumy, Ukraine

Abstract

The alloy element Nb plays an important role in improving the performance of zirconium alloys in nuclear reactors. The effect mechanism of Nb doping on mechanical and thermodynamic properties was investigated using experimental and theoretical methods. The results of this study showed us that Nb doping refines grains and enhances hardness. The hardness increases from 2.67 GPa of pure Zr to 2.99 GPa of Zr1.5Nb. Depending on the first-principles calculations, the hardness decreases with the increase in the Nb concentration in the Zr matrix, namely from 2.45 Gpa of pure Zr to 1.78 GPa of Zr1.5Nb. If the first-principles calculations indicate that the hardness decreases with the increase in the Nb concentration in the Zr matrix, grain refinement or defects could play a major role in the increase in hardness. Furthermore, regarding the effect of Nb doping on thermal expansion coefficients, the increase in Nb content causes the thermal expansion coefficients to decrease, which might stem from the strong binding energy between Nb and Zr atoms. The thermal conductivities of three samples show similar changing trends, indicating that thermal conductivity begins to decrease at room temperature and reaches a minimum value of around 400 °C. The thermal conductivity of pure zirconium samples is consistently higher, is more obvious than that of Nb-doped samples in the test range, and decreases with an increase in the doping concentration. The possible reasons for this might stem from the distortion of the Zr matrix due to Nb substitution doping and grain refinement, both of which cause phonon propagation scattering and thus hinder the propagation of phonons. The results obtained herein may be useful for the development of advanced nuclear fuels and waste forms that utilize zirconium in applications beyond their current usage.

Funder

National Key Research and Development Program of China

China Postdoctoral Science Foundation Program

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3