Genotoxic Effects on Daphnia magna Fed with Aquatic Green Algae Exposed to Silver Nanoclusters

Author:

Zhang Li1ORCID,Tan Haoqiang2

Affiliation:

1. Department of Environmental Engineering, School of Life Sciences, Taizhou University, Taizhou 318000, China

2. School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China

Abstract

Ag nanoclusters (AgNCs) have gained widespread applications in recent years due to their excellent antimicrobial efficacy and distinctive molecule-like characteristics. However, concerns about their potential effects on environmental and human health have been raised. Despite the fact that abundant research has been carried out to examine the possible ecotoxicology of AgNCs in a variety of living organisms, these studies have mostly concentrated on the toxicology of individual organisms and only a few have attempted to look into the impact of AgNCs across the aquatic food chain. This work evaluated the transcriptome level genotoxicity of AgNCs and their degraded Ag ions in two model species food chains: the aquatic green algae Scenedesmus obliquus and the invertebrate Daphnia magna. Daphnia magna’s digestive system and glycerophospholipid metabolism were hindered after feeding on Ag-containing algae as a result of down-regulation of the crucial gene PLA2G(SPLA2) that codes for secretory phospholipase A2. Our research also showed that the genotoxicity of AgNCs to Daphnia magna was mediated by a synergic interaction between the particulate form of AgNCs and their degraded Ag ions. The current work offers a fresh viewpoint on the mechanisms underlying AgNCs’ harmful effects and the possible ecological concern that metal-based nanoparticles provide to aquatic life.

Funder

Water Pollution Control and Treatment Projects of the Ministry of Science and Technology of China

National Natural Science fund of China

Campus for Research Excellence and Technological Enterprise (CREATE) programme between Singapore and Shanghai Jiao Tong University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3