An Impedance Readout IC with Ratio-Based Measurement Techniques for Electrical Impedance Spectroscopy

Author:

Cheon Song-IORCID,Kweon Soon-JaeORCID,Kim Youngin,Koo Jimin,Ha SohmyungORCID,Je MinkyuORCID

Abstract

This paper presents an error-tolerant and power-efficient impedance measurement scheme for bioimpedance acquisition. The proposed architecture measures the magnitude and the real part of the target complex impedance, unlike other impedance measurement architectures measuring either the real/imaginary components or the magnitude and phase. The phase information of the target impedance is obtained by using the ratio between the magnitude and the real components. This can allow for avoiding direct phase measurements, which require fast, power-hungry circuit blocks. A reference resistor is connected in series with the target impedance to compensate for the errors caused by the delay in the sinusoidal signal generator and the amplifier at the front. Moreover, an additional magnitude measurement path is connected to the reference resistor to cancel out the nonlinearity of the proposed system and enhance the settling speed of the low-pass filter by a ratio-based detection. Thanks to this ratio-based detection, the accuracy is enhanced by 30%, and the settling time is improved by 87.7% compared to the conventional single-path detection. The proposed integrated circuit consumes only 513 μW for a wide frequency range of 10 Hz to 1 MHz, with the maximum magnitude and phase errors of 0.3% and 2.1°, respectively.

Funder

Ministry of Trade, Industry and Energy

Ministry of Science ICT and Future Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impedance-Readout Integrated Circuits for Electrical Impedance Spectroscopy: Methodological Review;IEEE Transactions on Biomedical Circuits and Systems;2024-02

2. A 4-Decade-Tunable High-Selectivity Gm -C Bandpass Filter for Simultaneous Multi-Sine Bioimpedance Analysis;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-01

3. Fast-Settling Onboard Electrochemical Impedance Spectroscopy System Adopting Two-Stage Hilbert Transform;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

4. Signal Processing Circuits and Systems for Smart Sensing Applications;Sensors;2023-06-10

5. Fast-settling Onboard Electrochemical Impedance Spectroscopy System Adopting Quasi-linear-phase Band-pass Filter;2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3