Analysis and Multi-Objective Optimization for Reducing Energy Consumption and Improving Surface Quality during Dry Machining of 304 Stainless Steel

Author:

Du FeilongORCID,He Lin,Huang Haisong,Zhou TaoORCID,Wu Jinxing

Abstract

Cutting quality and production cleanliness are main aspects to be considered in the machining process, and determining the optimal cutting parameters is a significant measure to reduce energy consumption and optimize surface quality. In this paper, 304 stainless steel is adopted as the research objective. The regression models of the specific cutting energy, surface roughness, and microhardness are constructed and the inherent influence mechanism between cutting parameters and output responses are analyzed by analysis of variance (ANOVA). The desirability analysis method is introduced to perform the multi-objective optimization for low energy consumption (LEC) mode and low surface roughness (LSR) mode. Optimal combination of process parameters with composite desirability of 0.925 and 0.899 are obtained in such two modes respectively. As indicated by the results of multi-objective genetic algorithm (MOGA), genetic algorithm (GA) combined with weighted-sum-type objective function and experiment, the relative deviation values are within 10%. Moreover, the results also reveal that the feed rate is the most significant factor affecting the three responses, while the correlation of cutting depth is less noticeable. The effect of low feed rate on microhardness is primarily related to the mechanical load caused by extrusion, and the influence at high feed rate is determined by plastic deformation.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3