Prostate Cancer-Specific Lysine 53 Acetylation of Cytochrome c Drives Metabolic Reprogramming and Protects from Apoptosis in Intact Cells

Author:

Morse Paul T.1ORCID,Wan Junmei1ORCID,Arroum Tasnim1ORCID,Herroon Mackenzie K.2ORCID,Kalpage Hasini A.1,Bazylianska Viktoriia13ORCID,Lee Icksoo4,Heath Elisabeth I.5ORCID,Podgorski Izabela2,Hüttemann Maik13ORCID

Affiliation:

1. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA

2. Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA

3. Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI 48201, USA

4. College of Medicine, Dankook University, Cheonan-si 31116, Republic of Korea

5. Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI 48201, USA

Abstract

Cytochrome c (Cytc) is important for both mitochondrial respiration and apoptosis, both of which are altered in cancer cells that switch to Warburg metabolism and manage to evade apoptosis. We earlier reported that lysine 53 (K53) of Cytc is acetylated in prostate cancer. K53 is conserved in mammals that is known to be essential for binding to cytochrome c oxidase and apoptosis protease activating factor-1 (Apaf-1). Here we report the effects of this acetylation on the main functions of cytochrome c by expressing acetylmimetic K53Q in cytochrome c double knockout cells. Other cytochrome c variants analyzed were wild-type, K53R as a control that maintains the positive charge, and K53I, which is present in some non-mammalian species. Intact cells expressing K53Q cytochrome c showed 49% decreased mitochondrial respiration and a concomitant increase in glycolytic activity (Warburg effect). Furthermore, mitochondrial membrane potential was decreased, correlating with notably reduced basal mitochondrial superoxide levels and decreased cell death upon challenge with H2O2 or staurosporine. To test for markers of cancer aggressiveness and invasiveness, cells were grown in 3D spheroid culture. K53Q cytochrome c-expressing cells showed profoundly increased protrusions compared to WT, suggesting increased invasiveness. We propose that K53 acetylation of cytochrome c is an adaptive response that mediates prostate cancer metabolic reprogramming and evasion of apoptosis, which are two hallmarks of cancer, to better promote tumor survival and metastasis.

Funder

Office of the Assistant Secretary of Defense for Health Affairs

National Institutes of Health

Michigan Prostate SPORE Developmental Research Program

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3