Affiliation:
1. School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
3. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract
Entanglement is one of the most striking features of quantum systems, whereby its non-classical correlation is an essential resource in numerous quantum protocols. Entanglement can be divided into two categories: interparticle and intraparticle entanglement. There are both distinctions and similarities between these two kinds of entangled states. This work delves into these distinctions and similarities from the following aspects: correlation and non-locality, robustness, the mechanisms of generation and separation, and practical applications. Entanglement swapping is a technique based on quantum entanglement. As entanglement has different categories, entanglement swapping also has various types, including interparticle to interparticle and intraparticle to interparticle. Swapping protocols from intraparticle entanglement to interparticle entanglement can be applied to super quantum dense encoding, quantum information transmission, quantum teleportation, etc. Thus, this work proposes three swapping protocols, from spin–orbit intraparticle entanglement to spin–spin interparticle entanglement, based on Bell state joint measurement, the cross-Kerr medium, and linear optical elements. This work can help us better understand entanglement by analyzing the differences and similarities between the two types of entangled states. It can also enhance entanglement swapping protocols, from spin–orbit intraparticle to spin–spin interparticle entanglement, for use in quantum information transfer.
Funder
the Municipal Government of Quzhou under