Refined Prior Guided Category-Level 6D Pose Estimation and Its Application on Robotic Grasping

Author:

Sun Huimin1ORCID,Zhang Yilin1ORCID,Sun Honglin1ORCID,Hashimoto Kenji1ORCID

Affiliation:

1. Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan

Abstract

Estimating the 6D pose and size of objects is crucial in the task of visual grasping for robotic arms. Most current algorithms still require the 3D CAD model of the target object to match with the detected points, and they are unable to predict the object’s size, which significantly limits the generalizability of these methods. In this paper, we introduce category priors and extract high-dimensional abstract features from both the observed point cloud and the prior to predict the deformation matrix of the reconstructed point cloud and the dense correspondence between the reconstructed and observed point clouds. Furthermore, we propose a staged geometric correction and dense correspondence refinement mechanism to enhance the accuracy of regression. In addition, a novel lightweight attention module is introduced to further integrate the extracted features and identify potential correlations between the observed point cloud and the category prior. Ultimately, the object’s translation, rotation, and size are obtained by mapping the reconstructed point cloud to a normalized canonical coordinate system. Through extensive experiments, we demonstrate that our algorithm outperforms existing methods in terms of performance and accuracy on commonly used benchmarks for this type of problem. Additionally, we implement the algorithm in robotic arm-grasping simulations, further validating its effectiveness.

Funder

Future Robotics Organization, Waseda University

Humanoid Robotics Institute, Waseda University

JSPS KAKENHI

Waseda University Grant for Special Research Projects

JST SPRING

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3