Guessing Human Intentions to Avoid Dangerous Situations in Caregiving Robots

Author:

Zapata Noé1ORCID,Pérez Gerardo1ORCID,Bonilla Lucas1ORCID,Núñez Pedro1ORCID,Bachiller Pilar1ORCID,Bustos Pablo1ORCID

Affiliation:

1. RoboLab, Robotics and Artificial Vision, University of Extremadura, 10003 Cáceres, Spain

Abstract

The integration of robots into social environments necessitates their ability to interpret human intentions and anticipate potential outcomes accurately. This capability is particularly crucial for social robots designed for human care, as they may encounter situations that pose significant risks to individuals, such as undetected obstacles in their path. These hazards must be identified and mitigated promptly to ensure human safety. This paper delves into the artificial theory of mind (ATM) approach to inferring and interpreting human intentions within human–robot interaction. We propose a novel algorithm that detects potentially hazardous situations for humans and selects appropriate robotic actions to eliminate these dangers in real time. Our methodology employs a simulation-based approach to ATM, incorporating a “like-me” policy to assign intentions and actions to human subjects. This strategy enables the robot to detect risks and act with a high success rate, even under time-constrained circumstances. The algorithm was seamlessly integrated into an existing robotics cognitive architecture, enhancing its social interaction and risk mitigation capabilities. To evaluate the robustness, precision, and real-time responsiveness of our implementation, we conducted a series of three experiments: (i) A fully simulated scenario to assess the algorithm’s performance in a controlled environment; (ii) A human-in-the-loop hybrid configuration to test the system’s adaptability to real-time human input; and (iii) A real-world scenario to validate the algorithm’s effectiveness in practical applications. These experiments provided comprehensive insights into the algorithm’s performance across various conditions, demonstrating its potential for improving the safety and efficacy of social robots in human care settings. Our findings contribute to the growing research on social robotics and artificial intelligence, offering a promising approach to enhancing human–robot interaction in potentially hazardous environments. Future work may explore the scalability of this algorithm to more complex scenarios and its integration with other advanced robotic systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3