Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal

Author:

Esteves Ana F.ORCID,Soares Sara M.,Salgado Eva M.,Boaventura Rui A. R.ORCID,Pires José C. M.ORCID

Abstract

Natural resources are becoming increasingly scarce, and the need to control their consumption and recycle their use is growing. Water is one of the essential resources for human survival. Therefore, there has been an increasing interest in ways to save, recycle and treat water supplies. Aquaculture is one of the most polluting activities as it produces a significant wastewater volume, which needs proper treatment before being discharged into the environment or recycled. Microalgae are a potential solution for wastewater treatment. Due to their numerous advantages, the use of microalgal biomass is being studied, and, at present, there is already a market and room for profit in the sale of microalgal components in various forms, such as animal and human supplements. From a biorefinery point of view, it is important to take advantage of all the qualities and benefits that microalgae have by combining their great capacity to treat wastewater and exploit the produced biomass, analysing its composition for subsequent valorisation, for example. In this study, Chlorella vulgaris was used to treat aquaculture wastewater from a trout farm aquaculture facility, and the treatment efficiency was evaluated. To valorise the resulting biomass, its composition was also assessed. C. vulgaris successfully grew in the effluent with growth rates of 0.260 ± 0.014 d−1 and with average productivity of 32.9 ± 1.6 mg L−1 d−1. The achieved removal efficiencies were 93.5 ± 2.1% for total nitrogen, 98.0 ± 0.1% for nitrate-nitrogen and 92.7 ± 0.1% for phosphate-phosphorus. Concerning biomass composition, the lipids (15.82 ± 0.15%), carbohydrates (48.64 ± 0.83%), and pigment contents (0.99 ± 0.04% for chlorophyll a + b and 0.21 ± 0.04% for carotenoids) were similar to the values of similar studies. However, the protein content obtained (17.93 ± 1.21%) was lower than the ones mentioned in the literature.

Funder

ALiCE

LEPABE

Associate Laboratory LSRE–LCM

Project PIV4Algae

Project PhotoBioValue

FCT PhD Research Scholarships

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Effective treatment of aquaculture wastewater with mussel/microalgae/bacteria complex ecosystem: A pilot study;Geng;Sci. Rep.,2022

2. Pollution potential indicators for feed-based fish and shrimp culture;Chatvijitkul;Aquaculture,2017

3. Fath, B. (2019). Encyclopedia of Ecology, Elsevier. [2nd ed.].

4. Fouzia, H.B. (2019). Monitoring of Marine Pollution, IntechOpen.

5. European Union (1991). Directive 1991/271/EEC—Directive of the European Council oh 21 May 1991 concerning urban wastewater treatment. J. Eur. Commun., 34, 40.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3