Abstract
Highly sensitive information about people’s social life and daily activities flows in smart home networks. As such, if attackers can manage to capture or even eavesdrop on this information, the privacy of the users can be compromised. The consequences can be far-reaching, such as knowing the status of home occupancy that can then facilitate burglary. To address these challenges, approaches such as data aggregation and signcryption have been utilized. Elliptic curve cryptography, bilinear pairing, asymmetric key cryptosystem, blockchain, and exponential operations are among the most popular techniques deployed to design these security solutions. However, the computational, storage and communication complexities exhibited by the majority of these techniques are too high. This renders these techniques unsuitable for smart home components such as smart switches and sensors. Some of these schemes have centralized architectures, which present some single points of failure. In this paper, symmetric key authentication procedures are presented for smart home networks. The proposed protocol leverages on cryptographic primitives such as one-way hashing and bitwise exclusive-Or operations. The results indicate that this scheme incurs the lowest communication, storage, and computation costs compared to other related state-of-the-art techniques. Empirically, our protocol reduces the communication and computation complexities by 16.7% and 57.7%, respectively. In addition, it provides backward key secrecy, robust mutual authentication, anonymity, forward key secrecy, and unlinkability. Moreover, it can effectively prevent attacks such as impersonation, session hijacking, denial of service, packet replays, man-in-the-middle, and message eavesdropping.
Funder
Natural Science Foundation of Top Talent of SZTU
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献