Displacement and Extinction of Jet Diffusion Flame Exposed to Speaker-Generated Traveling Sound Waves

Author:

Zhang Ya-JieORCID,Jamil Huzaifa,Wei Yan-Ju,Yang Ya-Jing

Abstract

Acoustic flame suppression is a potential technology which does away with the need to carry fire-extinguishing media and does not cause secondary pollution. We herein reported an experimental study on the displacement and extinction of jet diffusion flames exposed to speaker-generated traveling sound waves with a frequency of 110–150 Hz and local sound pressure of 2–16 Pa. The simultaneous movement of the flame and fuel was captured using a high-speed camera and schlieren techniques. Results showed that the flame oscillation was dominated by induced wind produced by membrane vibrations instead of sound pressure, and this induced wind’s frequency was the same as that of sound waves. Moreover, the movement of unburned fuel and flame was not synchronous, which resulted in an interrupted fuel–flame cycle. Consequently, the flame was gradually suppressed and completely extinguished after several oscillation cycles. Finally, we determined the extinction criterion that when the dimensionless gap between the flame and the unburned fuel was greater than or equal to 7, the flame would be extinguished. Results clearly revealed the mechanism of acoustic fire extinguishing, which provided reference for the feasibility of acoustic fire-extinguishing applications.

Funder

the National Natural Science Foundation of China

the Shaanxi Provincial Key R&D Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3