Composite Based on Multi-Walled Carbon Nanotubes and Manganese Oxide with Rhenium Additive for Supercapacitors: Structural and Electrochemical Studies

Author:

Korusenko Petr M.,Nesov Sergey N.ORCID

Abstract

The structure and electrochemical characteristics of composites based on multi-walled carbon nanotubes (MWCNTs) and manganese oxide with the addition of rhenium oxide has been studied. It has shown that the decorating of the MWCNT surface with layers or nanoparticles of manganese oxide (Mn(III) + Mn(IV)) provides more than a twofold increase in the value of the specific capacitance at low potential scan rates. However, composites based only on manganese oxide exhibit poor electrochemical behavior and the value of the specific capacitance decreases rapidly with increasing potential scan rate due to the limitation of diffusion processes. The addition of rhenium oxide to composites significantly increases their electrochemical properties due to changes in the chemical composition and morphology of composites. Studies of the structure and chemical state have shown that an improvement in the specific capacitance is provided by increasing in the proportion of Mn(IV) oxide in such composites, which has the ability to rapidly and completely reverse redox reactions and has lower electrical resistance values, compared to Mn(III) oxide. A detailed analysis of the voltammetric data showed that an increase in the rate capability in composites with the addition of rhenium oxide can also be provided by increasing the availability of the electrode surface for electrolyte ions and increasing the amount of charge stored due to the formation of a double electric layer.

Funder

Scholarship of the President of the Russian Federation

Governmental order for Omsk Scientific Center SB RAS

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3