Enhanced Energy Storage Performance by Relaxor Highly Entropic (Ba0.2Na0.2K0.2La0.2Bi0.2)TiO3 and (Ba0.2Na0.2K0.2Mg0.2Bi0.2)TiO3 Ferroelectric Ceramics

Author:

Jabeen NawishtaORCID,Hussain AhmadORCID,Qaiser Muhammad Adnan,Ali JazibORCID,Rehman Abdul,Sfina Nourreddine,Ali Gharieb A.,Tirth Vineet

Abstract

Dielectric ceramic capacitors have attained considerable attention due to their energy storage performance in the field of advanced high/pulsed power capacitors. For such a purpose, configurationally disordered composite material engineering, with the substitution of suitable oxide cations at a single lattice site have demonstrated a strong dielectric relaxor phase with the ability to show high performance capacitive properties. Herein, two prominent high-entropy ceramics systems (Ba0.2Na0.2K0.2A0.2Bi0.2)TiO3, (with A = La and Mg) were fabricated to evaluate their structural, ferroelectric and dielectric properties. XRD patterns and Rietveld refinement of the XRD analysis confirmed the cubic structure Pm3¯m space group of the ceramics. The relative dielectric analysis of Ba0.2Na0.2K0.2La0.2Bi0.2TiO3 (BNKLBT) and Ba0.2Na0.2K0.2Mg0.2Bi0.2TiO3 (BNKMBT) ceramics were demonstrated with relaxor ferroelectric behavior having diffusion coefficients of 1.617 and 1.753, respectively. Moreover, BNKLBT and BNLMBT ceramics presented better stored energy density (1.062 J/cm3 and 0.8855 J/cm3, respectively) and high energy conversion efficiency (80.27% and 82.38%, respectively) at an electric field of 100 kV/cm. The results clearly demonstrate that such high-entropy configured ceramics have the potential to be used in efficient energy storage devices.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3