An Improved Shoulder Line Extraction Method Fusing Edge Detection and Regional Growing Algorithm

Author:

Jiao Haoyang,Li FayuanORCID,Wei HongORCID,Liu Wei

Abstract

Shoulder lines can best depict the morphological characteristics of the Loess Plateau. Moreover, a shoulder line depicts the external appearance of spatial differentiation of loess landforms and the internal mechanism of loess landform evolution. The efficient and accurate extraction of shoulder lines can help to deepen the re-understanding of the morphological structure and differentiation of loess landforms. However, the problem of shoulder line continuity in the extraction process has not been effectively solved. Therefore, based on high-resolution satellite images and digital elevation model (DEM) data, this study introduced the regional growing algorithm to further correct edge detection results, thereby achieving complementary advantages and improving the accuracy and continuity of shoulder line extraction. First, based on satellite images, the edge detection method was used to extract the original shoulder lines. Subsequently, by introducing the regional growing algorithm, the peaks and the outlet point extracted with the DEM were used as the growth points of the positive and negative (P-N) terrains to grow in four-neighborhood fields until they reached a P-N terrain boundary or a slope threshold. Finally, the P-N terrains extracted by the regional growing method were used to correct the edge detection results, and the “burr” was removed using a morphological image-processing method to obtain the shoulder lines. The experimental results showed that the method proposed in this paper can accurately and effectively complete the extraction of shoulder lines. Furthermore, the applicability of this method is better and opens new ideas for quantitative research on loess landforms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3