Off-Axis Holographic Interferometer with Ensemble Deep Learning for Biological Tissues Identification

Author:

Lam HosonORCID,Zhu YanminORCID,Buranasiri Prathan

Abstract

This paper proposes a method with an off-axis interferometer and an ensemble deep learning (I-EDL) hologram-classifier to interpret noisy digital holograms captured from the tissues of flawed biological specimens. The holograms are captured by an interferometer, which serves as a digital holographic scanner to scan the tissue with 3D information. The method achieves a high success rate of 99.60% in identifying the specimens through the tissue holograms. It is found that the ensemble deep learning hologram-classifier can effectively adapt to optical aberration coming from dust on mirrors and optical lens aberrations such as the Airy-plaque-like rings out-turn from the lenses in the interferometer. The deep learning network effectively adapts to these irregularities during the training stage and performs well in the later recognition stage without prior optical background compensations. The method does not require an intact sample with a full outline shape of the specimens or the organs to understand the objects’ identities. It demonstrates a new paradigm in object identification by ensemble deep learning through a direct wavefront recognition technique.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Signal detection by complex spatial filtering;Lugt;IEEE Trans. Inf. Theory,1964

2. Optical image recognition of three-dimensional objects;Poon;Appl. Opt.,1999

3. Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and Wigner analysis;Kim;Opt. Eng.,1999

4. Three-dimensional matching by use of phase-only holographic information and the Wigner distribution;Kim;JOSA A,2000

5. Robust recognition of partially occluded 3-D objects from computationally reconstructed hologram by using a spatial filtering scheme;Park;Proceedings of the Practical Holography XXIII: Materials and Applications,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the use of deep learning for phase recovery;Light: Science & Applications;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3