Analysis of Telescope Wavefront Aberration and Optical Path Stability in Space Gravitational Wave Detection

Author:

Chen Zhiwei,Leng RongkuanORCID,Yan Changxiang,Fang Chao,Wang Zhi

Abstract

Space-based gravitational wave detection programs, such as the Laser Interferometer Space Antenna (LISA) or Taiji program, obtain gravitational wave signals by measuring the change in the distance between three satellites by laser. The telescope is an important part of the measurement system, and its function is to transmit and receive laser signals. Due to changes in the space environment, the telescope will inevitably introduce additional dynamic aberrations, which will bring optical path errors to the inversion of gravitational wave signals. Taking LISA as an example, to achieve pm-level measurement accuracy at the detection frequency of 0.1 mHz–1 Hz, the stability requirements of the telescope are less than 1 pm/Hz1/2. This paper theoretically deduces the aberration types that affect the telescope’s stability and conducts simulation analysis according to the actual phase demodulation method, which verifies the theory’s correctness. In addition, using this theory, it can be concluded that under the condition that the total size of the telescope aberration is determined to be stable, reducing the ratio of rotationally symmetric aberrations such as “spherical aberration” and “defocusing” among common aberrations can significantly improve the stability of the telescope. The conclusion guides the optical system design of LISA or Taiji.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3