Abstract
The ultrasonic transmission detection method is used to investigate the applicability for the second-harmonic generation (SHG) technology of longitudinal wave to quantitatively assess carbonated concrete. The principal of this method is to use the piezoelectric lead zirconate titanate (PZT) patch to detect the second-harmonic of longitudinal waves during the concrete carbonation process and extract non-linear parameters from observed signals. Non-linear parameters of concretes with two water–cement ratios (CI (w/c=0.47), CII (w/c=0.53)), two moisture contents (CI 0%, CI-W 100%), and three ultrasonic incident frequencies (50 kHz, 75 kHz, 100 kHz) were measured in this study. Results of the experiment demonstrate that non-linear ultrasonic parameters of longitudinal ultrasonic waves with high frequencies (75 kHz, 100 kHz) exhibit a better resolution regarding changes in concrete microstructure. Moisture (CI 0%, CI-W 100%) has little effect on the rate (CI: 62.73%, CI-W: 60.25, carbonation depth: 15 mm) for the change in relative non-linear parameters in the same concrete. The carbonation depth of concrete (CI (w/c=0.47), CI-W (w/c=0.47), CII (w/c=0.53)) can be well reflected by the change in relative non-linear parameters. Furthermore, there exists a good fit between the relative non-linear parameters of longitudinal waves and the concrete carbonation process. The relative non-linear parameters of longitudinal waves demonstrate feasibility in the quantitative assessment of concrete carbonation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献