Filtration Performance of Nonwoven Geotextile Filtering Fine-Grained Soil under Normal Compressive Stresses

Author:

Du ChunxueORCID,Xu Chao,Yang Yang,Wang Jiangfeng

Abstract

To avoid serious clogging and loss of drainage capacity, which puts the underground structure at risk of anti-floating failure, the buried drainage filter must be equipped with a nonwoven geotextile layer. In this scenario, nonwoven geotextiles are subjected to normal compressive stress, which can cause changes in geotextile porosity and structure, affecting the filtration behavior of the geotextile filter. In this paper, in order to evaluate the filtration compatibility of the soil–geotextile system, gradient ratio (GR) tests were performed under a hydraulic gradient of 1.0 using a specially designed gradient ratio filtration device capable of applying normal stress. In total four nonwoven geotextiles and two types of soil were used. The results of the gradient ratio filtration tests were discussed in terms of GR values, the permeability of the soil–geotextile system, and the amount of fines retained in geotextiles. It was shown that under a larger normal compressive stress, the GR value would also increase, while the permeability coefficient of the soil–geotextile system decreased. The filtration responses to various soil–geotextile combinations differed under normal compressive stress. A thick nonwoven geotextile with a small filtration opening size exhibited poor filtration performance while benefiting soil retention. Fines retention was influenced by geotextile thickness, soil type, and normal compressive stress magnitude. In addition, for nonwoven geotextiles filter fine-grained soil under normal compressive stress, the test results indicated that anticlogging design criteria should be improved.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Delmas, G., and Girard, H. (2002, January 1). Geotextile filtration systems for dams—30 years of improvement. Proceedings of the 7th International Conference on Geosynthetics (ICG), Lisse, The Netherlands.

2. Koerner, R.M. (2016). Geotextiles, Elsevier.

3. Performance of nonwoven geotextiles on soil drainage and filtration;Sabiri;Eur. J. Environ. Civ. Eng.,2020

4. Modelling of hydraulic deterioration of geotextile filter in tunnel drainage system;Kim;Geotext. Geomembr.,2020

5. Influence of clogging substances on pore characteristics and permeability of geotextile envelopes of subsurface drainage pipes in arid areas;Guo;Geotext. Geomembr.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3