Surface Subsidence Monitoring in Kunming City with Time-Series InSAR and GNSS

Author:

Zhu Shasha,Zuo Xiaoqing,Shi Ke,Li Yongfa,Guo Shipeng,Li ChenORCID

Abstract

Kunming city is located in the middle of Yunnan Province. Due to large-scale groundwater exploitation and urban development in recent years, this area has been affected by surface subsidence. In this paper, Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) data are used to monitor the surface subsidence in Kunming city area for better analysis and understanding. The study used data of Sentinel-1A from 2018 to 2020 with atmospheric correction based on GACOS to calculate the average annual subsidence rate in Kunming city area, and the results show that the maximum subsidence rate is 48 mm/year. The subsidence obtained by InSAR is compared with the vertical deformation information obtained by eight GNSS stations in continuous operation in the study area. The subsidence rate trend show by the two methods is consistent, which further verifies the validity of InSAR data to reflect the local deformation. Experimental results shown that the eastern and northeastern Dianchi lake areas were affected by underground resources mining, and the induced surface subsidence characteristics were obvious, with the surface subsidence rate reachde 48 mm/year and 37 mm/year respectively. The Kunyang Phosphate Mine also had different degrees of mining subsidence disaster, with the maximum subsidence rate reached 36 mm/year. The subsidence rate of InSAR and GNSS has the same trend on the whole. However, GNSS sites are generally located in stable areas, the settlement amount obtained in the same time period is somewhat different from that of InSAR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Land subsidence monitoring in North Henan plain based on SBAS-InSAR technology;Xu;J. Jilin Univ.,2019

2. Research progress and methods of InSAR for deformation monitoring;Zhu;Acta Geod. Cartogr. Sin.,2017

3. Hu, B., Chen, J., and Zhang, X. (2019). Monitoring the surface subsidence area in a coastal urban area with InSAR and GNSS. Sensors, 19.

4. Time-series InSAR applications over urban areas in China;Perissin;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2010

5. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees);Herrera;Remote Sens. Environ.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3