Effect of Raster Angle and Infill Pattern on the In-Plane and Edgewise Flexural Properties of Fused Filament Fabricated Acrylonitrile–Butadiene–Styrene

Author:

Qayyum Hamza,Hussain Ghulam,Sulaiman Muhammad,Hassan Malik,Ali AaqibORCID,Muhammad RiazORCID,Wei Hongyu,Shehbaz Tauheed,Aamir MuhammadORCID,Altaf KhurramORCID

Abstract

Fused Filament Fabrication (FFF) is a popular additive manufacturing process to produce printed polymer components, whereby their strength is highly dependent on the process parameters. The raster angle and infill pattern are two key process parameters and their effects on flexural properties need further research. Therefore, the present study aimed to print test specimens with varying raster angles and infill patterns to learn their influence on the in-plane and edgewise flexural properties of acrylonitrile–butadiene–styrene (ABS) material. The results revealed that the highest in-plane and edgewise flexural moduli were obtained when printing was performed at 0° raster angle. In comparison, the lowest values were obtained when the printing was executed with a 90° raster angle. Regarding the infill pattern, the tri-hexagon pattern showed the largest in-plane modulus, and the quarter-cubic pattern exhibited the greatest edgewise flexural modulus. However, considering both the modulus and load carrying capacity, the quarter-cubic pattern showed satisfactory performance in both planes. Furthermore, scanning electron microscopy was used to investigate the failure modes, i.e., raster rupture, delamination of successive layers and void formation. The failure occurred either due to one or a combination of these modes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Vafadar, A., Guzzomi, F., Rassau, A., and Hayward, K. (2021). Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci., 11.

2. Performance of 3D printed topologically optimized novel auxetic structures under compressive loading: Experimental and FE analyses;Gohar;J. Mater. Res. Technol.,2021

3. Mechanical properties of an additive manufactured CF-PLA/ABS hybrid composite sheet;Ahmed;J. Thermoplast. Compos. Mater.,2019

4. Thermal simulation of grain during selective laser melting process in 3D metal printing;Habib;J. Eng. Appl. Sci.,2020

5. (2015). Additive Manufacturing-General Principles-Terminologies (Standard No. ISO/ASTM 52900:2015;). Available online: https://www.iso.org/standard/69669.html.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3