Landslide Susceptibility Modeling Using a Deep Random Neural Network

Author:

Huang Cheng,Li Fang,Wei Lei,Hu Xudong,Yang Yingdong

Abstract

Developing landslide susceptibility modeling is essential for detecting landslide-prone areas. Recently, deep learning theories and methods have been investigated in landslide modeling. However, their generalization is hindered because of the limited size of landslide data. In the present study, a novel deep learning-based landslide susceptibility assessment method named deep random neural network (DRNN) is proposed. In DRNN, a random mechanism is constructed to drop network layers and nodes randomly during landslide modeling. We take the Lushui area (Southwest China) as the case and select 12 landslide conditioning factors to perform landslide modeling. The performance evaluation results show that our method achieves desirable generalization performance (Kappa = 0.829) and outperforms other network models such as the convolution neural network (Kappa = 0.767), deep feedforward neural network (Kappa = 0.731), and Adaboost-based artificial neural network (Kappa = 0.732). Moreover, the robustness test shows the advantage of our DRNN, which is insensitive to variations in training data size. Our method yields an accuracy higher than 85% when the training data size stands at only 10%. The results demonstrate the effectiveness of the proposed landslide modeling method in enhancing generalization. The proposed DRNN produces accurate results in terms of delineating landslide-prone areas and shows promising applications.

Funder

Construction of Meteorological Risk Early-Warning Service for Geological Disasters in Yunnan Province

Information Construction of Geological Environment in Yunnan Province

Application Study of Key Technologies of Spatial-temporal Information Service for Rain-induced Landslides

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3