Deep Learning of Diffuse Optical Tomography Based on Time-Domain Radiative Transfer Equation

Author:

Takamizu YuichiORCID,Umemura Masayuki,Yajima Hidenobu,Abe Makito,Hoshi Yoko

Abstract

Near infrared diffuse optical tomography (DOT) is a potential tool for diagnosing cancer by image reconstruction of tissue optical properties. A variety of image reconstruction methods for DOT have been attempted, in general, based on the diffusion equation (DE). However, the image quality is still insufficient to clinical use, which is mainly attributed to the fact that the DE is invalid in some regions, such as low-scattering regions, and the inverse problem is inherently ill-posed. In contrast, the radiative transfer equation (RTE) accurately describes light propagation in biological tissue and also the DOT by deep learning is recently thought to be an alternative approach to the inverse problem. Distribution of time of flight (DTOF) of photons estimated by the time-domain RTE lends itself to deep learning along a temporal sequence. In this study, we propose a new DOT image reconstruction algorithm based on a long-short-term memory and the time-domain RTE. In simulation studies, using this algorithm, we succeeded in detection of an absorbing inclusion with a diameter of 5 mm, an absorber mimicking cancer, which was embedded in a two-dimensional square model (4 cm × 4 cm) with an optically homogeneous background. Multiple absorbers and a bigger absorber embedded in this model were also detected. We also demonstrate that, if simulation data by beam injection from multiple directions are employed as a training set, the accuracy of detection is improved especially for multiple absorbers.

Funder

JST FOREST Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3