Optimization of Driving Speed of Electric Train Using Dynamic Programming Based on Multi-Weighted Cost Function

Author:

Byun Yeun SubORCID,Jeong Rag GyoORCID

Abstract

Trains are a large-capacity means of transportation, and they are preferred for long as well as short distances. Although trains are one of the most efficient modes of transportation for freight and passengers, they consume a significant amount of energy. Therefore, energy-efficient approaches have been studied over the years. Various optimal-control methods that integrate dynamic programming (DP) algorithms have been introduced to reduce the overall energy consumption. The purpose of optimizing the operation speed of the train according to the operating conditions using the DP algorithm is to find a speed profile that consumes minimum energy, under the condition that the target travel time is satisfied according to the given mileage. Here, a specific weight is applied to the cost function to find a velocity profile that satisfies the target travel time. In this case, the computation time increases proportionally to the number of times the weight is changed. In addition, because the weight versus the target travel time has a non-linear characteristic, various approaches have been proposed to reduce the number of iterations according to the weight change to satisfy the target travel time. This study suggests a method to quickly and effectively find the optimal solution for electric trains in a different way from previous studies. We present a DP algorithm for matrix processing, by arranging multiple weights within the applicable minimum and maximum weights and applying them to the cost function. The time taken to find the optimal solution can be reduced by half compared to the existing one, and the travel time and energy consumption corresponding to each weight can be checked at once. In addition, this result can be used as an indicator for effectively changing or establishing an electric-train operation plan. For a detailed comparison between the proposed and existing methods, the execution time results for each number of weights under the same calculation conditions are presented. In addition, to verify that there are no errors in the multi-weighting process, some of the multi-weighting coefficients were used to check whether the speed profile in the single-weighted calculation method was consistent.

Funder

Korea Railroad Research Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3