Clustering-Based Segmented Regression for Particulate Matter Sensor Calibration

Author:

Liu Sijie,Liu Xinyu,Lu Pei

Abstract

Nowadays, sensor-based air pollution sensing systems are widely deployed for fine-grained pollution monitoring. In-field calibration plays an important role in maintaining sensory data quality. Determining the model structure is challenging using existing methods of variable global fitting models for in-field calibration. This is because the mechanism of interference factors is complex and there is often insufficient prior knowledge on a specific sensor type. Although Artificial-Neuron-Net-based (ANN-based) methods ignore the complex conditions above, they also have problems regarding generalization, interpretability, and calculation cost. In this paper, we propose a clustering-based segmented regression method for particulate matter (PM) sensor in-field calibration. Interference from relative humidity and temperature are taken into consideration in the particulate matter concentration calibration model. Samples for modeling are divided into clusters and each cluster has an individual multiple linear regression equation. The final calibrated result of one sample is calculated from the regression model of the cluster the sample belongs to. The proposed method is evaluated under in-field deployment and performs better than a global multiple regression method both on PM2.5 and PM10 pollutants with, respectively, at least 16% and 9% improvement ratio on RMSE error. In addition, the proposed method is insensitive to reduction of training data and increase in cluster number. Moreover, it may bear lighter calculation cost, less overfitting problems and better interpretability. It can improve the efficiency and performance of post-deployment sensor calibration.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Zhuang Autonomous Region

PhD Research Startup Foundation of Guilin University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3