Rubber Creep Model and Its Influence on Mounting Stiffness

Author:

Fu Jianghua,Liu Yang,Su JintaoORCID,Chen Bao,Chen Zheming

Abstract

The mount of the engine will creep under the action of long-term load. Creep will change its original structure, resulting in changes in static and dynamic characteristics and fatigue life. In order to solve the problem of mounting rubber creep, the creep characteristics were studied in this paper. In order to study the influence of creep characteristics on engine mounting stiffness, a theoretical model of mount creep was established based on the creep mechanism of rubber. The effects of different loads on the creep characteristics of engine mount were studied. The static viscoelastic parameters and creep analysis of rubber mounting were analyzed numerically. The creep variation law of suspension under different loads is obtained. By analyzing the static and dynamic characteristics of no creep, 2.98 mm creep and 3.83 mm creep of engine mount, the creep characteristics and the variation law of mount stiffness of rubber mount were revealed. The results show that the static stiffness of suspension increases with the increase of creep. When the frequency is constant and the creep increases, the dynamic stiffness of the suspension increases obviously. In this paper, the creep characteristics of rubber mount are analyzed, and the results of the analysis provide a design method for rubber mount design.

Funder

Chongqing Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. Cheng, X. (2015). Study on Conductive Behavior of Nylon Composites under Creep and Stress Relaxation, Ningbo University.

2. Analysis of energy loss of rubber under dynamic load;Zhi;J. Polym. Sci.,2017

3. Ying Y, J. (2012). Fractional Models for Stress Relaxation and Creep of Polymers, Northwest Normal University.

4. Fei, W.Z., Yin, T.W., and Yong, L. (, 2013). Calculation and application of viscoelastic constitutive relation for rubber suspensions. Proceedings of the 19th Annual Conference of Beijing Mechanics Society, Beijing, China.

5. On the influence of CB loading on the creep and relaxation behavior of SBR and NBR rubber vulcanizates;Mostafa;Mater. Des.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3