Predicting Geotechnical Parameters from Seismic Wave Velocity Using Artificial Neural Networks

Author:

Johora Fatema Tuz,Hickey Craig J.ORCID,Yasarer Hakan

Abstract

Geotechnical investigation plays an indispensable role in site characterization and provides necessary data for various construction projects. However, geotechnical measurements are time-consuming, point-based, and invasive. Non-destructive geophysical measurements (seismic wave velocity) can complement geotechnical measurements to save project money and time. However, correlations between geotechnical and seismic wave velocity are crucial in order to maximize the benefit of geophysical information. In this work, artificial neural networks (ANNs) models are developed to forecast geotechnical parameters from seismic wave velocity. Specifically, published seismic wave velocity, liquid limit, plastic limit, water content, and dry density from field and laboratory measurements are used to develop ANN models. Due to the small number of data, models are developed with and without the validation step in order to use more data for training. The results indicate that the performance of the models is improved by using more data for training. For example, predicting seismic wave velocity using more data for training improves the R2 value from 0.50 to 0.78 and reduces the ASE from 0.0174 to 0.0075, and MARE from 30.75 to 18.53. The benefit of adding velocity as an input parameter for predicting water content and dry density is assessed by comparing models with and without velocity. Models incorporating the velocity information show better predictability in most cases. For example, predicting water content using field data including the velocity improves the R2 from 0.75 to 0.85 and reduces the ASE from 0.0087 to 0.0051, and MARE from 10.68 to 7.78. A comparison indicates that ANN models outperformed multilinear regression models. For example, predicting seismic wave velocity using field plus lab data has an ANN derived R2 value that is 81.39% higher than regression model.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3