Numerical Analysis of Reinforcing Effect for Scissors-Type Bridge with Strut Members

Author:

Chikahiro Yuki,Ario IchiroORCID

Abstract

Recently, a scissor mechanism was efficiently applied in the safety engineering field as an emergency structure owing to the advantages of mobility, transformability, and re-usability. This paper focuses on the advantages of this mechanism and puts forward a deployable emergency bridge called Mobile Bridge as a smart bridge. To deploy this bridge in an emergency situation, the structural safety, such as strength and stiffness, must be ensured through proper reinforcing methods. Several research studies concerning the reinforcing effect to scissors structures have been conducted using a cable and/or strut. However, the reinforcing situation was limited, and it is not clear where and how much reinforcement should be introduced. In this paper, we discuss the reinforcing effect of simple struts through a theoretical and numerical approach. Then, we evaluate their applicability to the Mobile Bridge based on numerical simulation. The advantage of the proposed reinforcing method is evaluated, focusing on the reduction of the bending moment which is the dominant sectional force in the scissor structure. We found the reinforcing effect has a nonlinear relationship between the stress and ratio of extension rigidity. The most effective reinforcing configuration was a double warren truss with the vertical element in a two-unit scissors-type bridge and a double warren truss without the vertical element in a three-unit scissors-type bridge. The necessary sectional area of the strut elements was more than 0.2 times that of the scissors member. These results imply that the smart bridge can enhance its performance by using proper reinforcement of the struts.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. (2022, December 01). Japan Meteorological Agency; Climate Change Monitoring Report 2021. Available online: https://www.jma.go.jp/jma/en/NMHS/ccmr/ccmr2021.pdf.

2. Investigation of Bridge Collapse Phenomena due to Heavy Rain Floods: Structural, Hydraulic, and Hydrological Analysis;Ario;J. Bridge Eng.,2022

3. Ario, I., Watanabe, G., Shibata, T., Kaita, T., and Kawamura, S. (2022). Investigation Report Damage Survey of Bridge Collapse Phenomena in Misasa River Due to Torrential Rain in Western Japan Flood in 2018, Academic Research Repository in Hiroshima University.

4. The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure;Ghobarah;Eng. Struct.,2006

5. Flood disaster rehabilitation, Charnawati, Nepal: A case study;Kraehenbuehl;Transp. Res. Rec.,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3