Model Interpretation Considering Both Time and Frequency Axes Given Time Series Data

Author:

Lee WoongheeORCID,Kim GayeonORCID,Yu Jeonghyeon,Kim YounghoonORCID

Abstract

Recently, deep learning-based models have emerged in the medical domain. Although those models achieve high performance, it is difficult to directly apply them in practice. Specifically, most models are not considered reliable yet, while they are not interpretable. Therefore, researchers attempt to interpret their own deep learning applications. However, the interpretation is task specific or only appropriate for image data such as computed tomography (CT) scans and magnetic resonance imaging (MRI). Currently, few works focus on the model interpretation given time series data such as electroencephalography (EEG) and electrocardiography (ECG) using LIME. Because the explanation generated by LIME is from the permutation of the divided input data, the performance of interpretation is highly dependent on the split method. In the medical domain, for the time series data, existing interpretations consider only the time axis, whereas physicians take account of the frequency too. In this work, we propose the model interpretation using LIME considering both time and frequency axes. Our key idea is that we divide the input signal using graph-based image clustering after transforming it using short-time Fourier transform, which is utilized to capture the change of frequency content over time. In our experiments, we utilize real-world data, which is EEG signals recorded from patients during polysomnographic (PSG) studies, as well as prove that ours captures a significantly more critical explanation than the state-of-the-art. In addition, we show that the representation obtained by ours reflects the physician’s standard such as K-complexes and delta waves, which are considered strong evidence of the second sleep stage and a clue of the third sleep stage. We expect that our work can be applied to establish computer-aided diagnosis as well as to measure the reliability of deep learning models taking the time series into them.

Funder

National Research Foundation of Korea

Artificial Intelligence Convergence Research Center

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3