Wavefront Shaping-Assisted Forward-Viewing Photoacoustic Endomicroscopy Based on a Transparent Ultrasound Sensor

Author:

Zhao Tianrui,Zhang Mengjiao,Ourselin Sebastien,Xia WenfengORCID

Abstract

Photoacoustic endoscopy (PAE) can provide 3D functional, molecular and structural information of tissue deep inside the human body, and thus could be well suited for guiding minimally invasive procedures such as tumour biopsy and fetal surgery. One of the major challenges in the development of miniature PAE probes, in particular, forward-viewing PAE probes, is the integration of a sensitive and broadband ultrasound sensor with the light delivery and scanning system into a small footprint. In this work, we developed a forward-viewing PAE probe enabling optical-resolution microscopy imaging based on a transparent ultrasound sensor coated on the distal end of a multimode optical fibre. The transparent sensor comprised a transparent polyvinylidene fluoride (PVDF) thin film coated with indium tin oxide (ITO) electrodes with a diameter of 2 mm. Excitation laser light was focused and raster-scanned across the facet of the probe tip through the multimode fibre and the PVDF-ITO thin film via wavefront shaping. The sensor had an optical transmission rate of 55–72% in the wavelength range of 400 to 800 nm, a centre frequency of 17.5 MHz and a −10 dB bandwidth of 25 MHz. Singular value decomposition was used to remove a prominent trigger-induced noise, which enabled imaging close to the probe tip with an optically defined lateral resolution of 2 µm. The performance of the imaging probe was demonstrated by obtaining high-fidelity photoacoustic microscopy images of carbon fibres. With further optimisation of the sensitivity, the probe promises to guide minimally invasive procedures by providing in situ, in vivo characterisation of tissue.

Funder

Academy of Medical Sciences/the Wellcome Trust/the Government Department of Business, Energy and Industrial Strategy/the British Heart Foundation/Diabetes UK Springboard Award

Wellcome Trust, United Kingdom

Engineering and Physical Sciences Research Council, United Kingdom

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3